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Objectives: Commercial photocurable polymers used in dental additive manufacturing still 

have mechanical limitations. The incorporation of graphene may provide interesting advan-

tages in this field. This study aimed to evaluate in vitro the effect of adding graphene nan-

oparticles to a 3D-printed polymethylmethacrylate dental resin in terms of surface rough-

ness, flexural properties, and hardness.

Methods: A 3D-printed dental resin (Dental Sand, Harz Lab) was loaded with four different 

graphene nanoplatelet (Graphenest) concentrations: 0.01wt%, 0.1wt%, 0.25wt%, and 0.5wt%. 

The neat resin was used as the control group. The surface roughness was measured with a 

contact profilometer using bar-shaped specimens (50x10x4mm). The flexural strength of 

specimens (80x10x4mm) from each group was calculated using the 3-point bending test in 

a Universal Test Machine. Hardness shore D was measured using a manual durometer on 

round-shaped specimens (12x6mm).  Data were evaluated using the Kruskall-Wallis test 

followed by post-hoc Bonferroni corrected pairwise inter-group comparisons. Statistical 

significance was set at p<0.05.

Results: Graphene improved 3D-printed PMMA resin hardness with statistical significance 

at a concentration of 0.01wt% (p=0.043). Surface roughness increased with graphene con-

centrations above 0.01wt%, with statistically significant differences at 0.25wt% (p=0.006) and 

0.5wt% (p=0.005) concentrations. Flexural properties worsened with increased graphene 

concentrations, and these differences were significant in the concentrations of 0.25wt% 

(p=0.028) and 0.5wt% (p=0.006). 

Conclusions: The use of graphene as a mechanical reinforcement nanomaterial seems to be 

viable at low concentrations without prejudice to the surface roughness of a 3D-printed 

polymethylmethacrylate resin. (Rev Port Estomatol Med Dent Cir Maxilofac. 2023;64(1):12-19)
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r e s u m o

Propriedades mecânicas e de superfície de uma resina dentária para 
impressão 3D reforçada com grafeno

Palavras-chave:

Resistência à flexão

Óxido de grafeno

Dureza

Polimetilmetacrilato

Impressão 3D

Objetivos: As resinas para impressão 3D em Medicina Dentária apresentam ainda limitações 

mecânicas. A adição de grafeno pode colmatar esse problema. O objetivo deste trabalho foi 

avaliar in vitro o efeito do grafeno numa resina de polimetilmetacrilato para impressão 3D 

ao nível da rugosidade de superfície, propriedades de flexão e dureza.

Métodos: Uma resina para impressão 3D foi aditivada com quatro concentrações de grafeno: 

0,01wt%, 0,1wt%, 0,25wt% e 0,5wt%. A resina pura foi usada como controlo. A rugosidade de 

superfície foi medida com um profilómetro de contacto em provetes retangulares 

(50x10x4mm). A resistência à flexão dos provetes (80x10x4mm) foi calculada usando o tes-

te de flexão em 3 pontos numa máquina de teste universal. A dureza shore D foi medida em 

provetes circulares (12x6mm) com um durómetro manual. Os resultados foram avaliados 

utilizando o teste de Kruskal Wallis seguido do teste post-hoc de Bonferroni para compara-

ções entre grupos. Valores de p<0,05 foram considerados estatisticamente significativos.

Resultados: O grafeno demonstrou melhorar a dureza da resina de polimetilmetacrilato em 

baixas concentrações, com significado estatístico na concentração de 0,01wt% (p=0,043). A 

rugosidade de superfície apresentou valores superiores à resina normal para concentrações 

de grafeno acima de 0,01wt%. Verificaram-se diferenças estatisticamente significativas nas 

concentrações de 0,25 (p=0,006) e 0,5wt% (p=0,005). As propriedades de flexão pioraram com 

o aumento de grafeno, sendo essas diferenças significativas nas concentrações de 0,25 

(p=0,028) e 0,5wt% (p=0,006).

Conclusões: O uso do grafeno como reforço mecânico de uma resina de polimetilmetacrila-

to impressão 3D parece viável em baixas concentrações, sem prejudicar a rugosidade de 

superfície. (Rev Port Estomatol Med Dent Cir Maxilofac. 2023;64(1):12-19)
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Introduction

Polymers are widely used in dental prostheses, including 
complete and partial removable dentures, provisional pros-
theses, and implant-supported prostheses. Moreover, polym-
ethyl methacrylate (PMMA) is still the most common material 
in dental prostheses fabrication.1-4

The use of CAD/CAM technologies in dentistry has been 
gaining increasing importance due to its ability to produce 
various shapes that conform to any biological site. Develop-
ments in computer technology and software applications are 
a relevant part of the groundswell of technological change that 
has led additive manufacturing technique — 3D printing — to 
where it is today.5-9 3D printers based on vat photopolymer-
ization, namely stereolithography (SLA) and digital light pro-
jection (DLP), were the first commercially available and are still 
among the most used.10,11

The emergence of these new technologies led to the devel-
opment of new suitable materials.12 However, the compatible 
photosensitive acrylic resins limit the application of vat po-
lymerization due to their high volume shrinkage, poor me-
chanical properties, and low thermal properties.13-16 Com-
pared to traditional PMMA resin, 3D-printed PMMA resin 
demonstrated lower values of flexural strength, modulus of 
elasticity, and fracture toughness.17-22 Therefore, there is an 

increasing interest in improving commercially available 
3D-printed resins by modifying and adapting their mechanical 
properties to emerging biomedical engineering applica-
tions.23-27 A promising way to modify and tailor 3D-printed 
resins’ properties could be through the dispersion of nanoma-
terials in the resin.28,29 

In current dentistry, using a PMMA resin with good me-
chanical properties for prosthesis fabrication is increasingly 
important.30-32 Consequently, there is a search for a suitable 
nanofiller that can provide increased mechanical performance 
without compromising the remaining physical and biological 
properties.33 Some studies34,35 have demonstrated that surface 
roughness significantly influenced the extent of microbial ad-
hesion to the denture base. Thus, changes in this important 
clinical variable might significantly influence bacterial adhe-
sion and retention.35-38

Recent developments in nanotechnology have enabled the 
use of graphene as a reinforcement phase in several polymers, 
including PMMA resins.39 This new strategy was developed to 
improve acrylic resins’ mechanical and biological drawbacks.40 
Graphene is a crystalline form of carbon isolated from graph-
ite,41 characterized by excellent mechanical, thermal, and elec-
tric properties.42,43 Despite the expected benefits of using 
graphene in dental applications, its mechanical behavior 
should be understood to anticipate clinical performance and 
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risk of failure.44 The effects of graphene reinforcement on the 
properties of 3D-printed PMMA dental resin have not been 
investigated.

Therefore, this investigation aims to study the effect of 
graphene reinforcement on the surface roughness and me-
chanical properties of a commercially available 3D-printed 
PMMA dental resin. The null hypothesis is that adding 
graphene does not change PMMA resin’s surface roughness, 
hardness, and flexural strength.

Material and Methods

Graphene nanoplatelets (GNPs) (Graphenest Advanced Nano-
techonoly®, Aveiro, Portugal) with a 3–10-nm thickness and 
8–30 layers with 0.5-2-µm lateral dimensions were added to 
Dental Sans resin (HARZ Labs® Inc., Russia) — a photosensi-
tive liquid mixture of methacrylate oligomers and monomers 
used for temporary crowns and bridges. The corresponding 
neat resin was used as the control group (G0). Four groups 
with different graphene concentrations were studied: 0.01wt% 
(G0.01), 0.1wt% (G0.1), 0.25wt% (G0.25), and 0.5wt% (G0.5).

GNPs were homogeneously mixed in the resin for 1 hour 
in total darkness in a high-power ultrasonic mixer to ensure 
their dispersion (375 w/L@40kHz). Then, GNPs’ presence in the 
polymer resin at different concentrations was assessed 
through Raman spectroscopy. The samples’ Raman spectra, 
with and without GNPs, were recorded in the 1400–2800-nm 
wavenumber range using a Horiba LabRAM HR Evolution con-
focal microscope (Horiba® Scientific, Longjumeau, France) 
equipped with a 532-nm (2.33 eV) laser.

All specimens were virtually designed in the CAD software 
Chitubox (CDB-Tech®, China) (Figure 1), and the corresponding 
CAD standard tessellation language (STL) files were sent to the 
3D printer. Then, the specimens were 3D printed using a stereo-
lithography printer with LCD technology (Phrozen® Mini 4K, 
Prozen, Taiwan) equipped with a 405-nm laser to cure the liquid 
polymer resin (Figures 2 and 3). The printing direction was 45°, 
and the layer resolution was 0.05 mm. The printed material had 
a density of 1.20 g/cm3 and a viscosity of 1.2 Pa.s. The addition of 
graphene did not change these polymer’s properties appreciably.

After printing, all specimens were cleaned using a 90% iso-
propyl alcohol bath in a post-processing machine (Creality3D® 
UW-02, Creality, China) for 5 minutes to remove unreacted 
resin according to the manufacturer’s indications. Then, the 

specimens were placed in an oven at 80°C for 30 minutes (POL-
EKO® Aparatura, Wodzisław Śląski, Poland) for post-print bak-
ing. Post-polymerization was performed in a UV-light curing 
unit for 10 minutes (Creality3D® UW-02, Creality, China). After-
ward, the support structures were removed using low-speed 
rotary instruments (5000 rpm).

Finally, the specimens were finished, polished, and mea-
sured using a digital caliper with a 0.01-mm resolution (ABSO-
LUTE® Digimatic Caliper Series 551, Mitutoyo Europe GmbH) 

Figure 1. CAD design of specimens.

Figure 2. 3D printer.

Figure 3. Specimens after the printing process.
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to ensure conformity to the ISO 20795-1’s dimensional thresh-
olds. After measurements, all specimens were disinfected us-
ing 70% ethanol for 5 minutes,45 and were stored under 37°C 
water for 24 h according to ISO 20795-1.46

Flexural properties were studied in 15 bar-shaped speci-
mens (80x10x4mm) according to ISO standard 178: Plastics - 
Determination of Flexural Properties.47 Three-point bending 
tests were performed on graphene-polymer resin specimens 
using a universal testing machine (Electropuls® E1000, Instron, 
USA) with a 10-kN load cell and a crosshead speed of 1mm/
min. The distance adjusted to provide support to the speci-
mens was 60 mm. The flexural strength of each type of 
graphene-polymer composite was obtained by averaging the 
test results of three separate specimens to reduce random er-
rors in specimen preparation and experimental measurement.

The Shore D hardness of each resin group (n=5) was mea-
sured using a manual analog durometer (Sauter® HBD 100-0, 
Sauter GmbH, Wutöschingen, German) on round-shaped spec-
imens (12x6mm) according to ASTM D2240.48 The specimen 
was placed under the indenter area with a 50-N load for 15 
seconds of measurement. The values obtained were analyzed 
on a scale of 0-100 shores of hardness, with higher values in-
dicating a harder material. Three measurements were per-
formed at different locations on each specimen, and mean 
values were calculated.

The surface roughness profile was measured in 25 bar-
shaped (50x10x4 mm) specimens, five of each group, using a 
contact profilometer (HommelWerke® LV – 50, Hommelwerke, 
Germany). The profilometer’s diamond tip had a 5-μm radius and 
ran the specimen’s surface, under constant load, following a 
straight measurement distance of 4.8 mm for 10 seconds. Three 
measurements were performed in each specimen. The average 
roughness was analyzed as Ra (µm): the arithmetic mean value 
of all heights (peaks and valleys) in a given roughness profile.

The statistical significance of the three properties analyzed 
was determined by the Kruskal-Wallis analysis of variance 
with a Bonferroni post-hoc test using the software Statistical 
Package for the Social Sciences (SPSS 25.0, Chicago, IL, USA). 
Statistical significance was set at p<0.05.

Results

Raman spectroscopy was performed to identify and evaluate 
the quality and structural properties of the graphene accord-
ing to the intensity, frequency, and line width of Raman 
modes G, D, and 2D. Two main peaks characterize the Raman 
spectra of monolayer graphene: the primary in-plane vibra-
tional mode, G (~ 1580 cm^-1), and 2D (~2690 cm^-1) a second 
overtone of a different out-of-plane vibration, D (~1350 cm^-1) 
(Figure 4). Raman spectroscopy results showed that GNPs 
consisted mainly of few-layer graphene and that photopoly-
merized resin was primarily PMMA. Raman spectra indicated 
the presence of graphene in every sample and no evident 
change in the typical graphene caused by its introduction into 
the resin system (Figure 5).

Table 1 shows the descriptive analysis results regarding 
hardness, flexural strength, and surface roughness per resin 
group. All graphene groups except the one with the lowest con-

centration influenced flexural strength negatively, with a sta-
tistically significant decrease in the 0.25wt% (p<0.028) and 
0.5wt% (p<0.003) concentrations compared to the control (Fig-
ure 6). The two lowest concentrations of graphene (0.01wt% and 
0.1wt%) increased the resin’s hardness, but only the lowest 
(0.01wt%) showed a statistically significant difference (p<0.043). 
Higher concentrations (0.25wt% and 0.5wt%) had the opposite 
effect, with the 0.5wt% concentration causing a statistically 
significant decrease in hardness (p<0.022) (Figure 7). Surface 
roughness increased with the increase of graphene concentra-
tion, with statistically significant differences in the 0.25wt% 
(p<0.006) and 0.5wt% (p<0.005) concentrations (Figure 8).

Figure 4. Raman spectra of pristine graphene powder.

Figure 5. Raman spectra of graphene present at four 
concentrations in the reinforced resins.
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Discussion

The mechanical properties of dental materials play a crucial role 
in their clinical performance and are strongly related to both 
processing and composition. Improving resistance by enhanc-
ing acrylic resins’ mechanical properties is an important subject 
that has hardly been investigated.49,50 Some studies,51-61 investi-
gated graphene-reinforced PMMA dental resins, but very little 
research has focused on vat polymerization for resin’s reinforce-
ment with graphene for biomedical applications.57

An acrylic prosthesis’ flexural behavior is one of its most 
important mechanical properties. In the present investigation, 

Table 1. Mean, standard deviation, minimum and maximum values of hardness, flexural strength, and surface 
roughness per resin group.

Test
Resin
Group

Mean Standard Deviation Minimum Maximum

Hardness
(Shore)

G0 84.03 0.52 83.39 84.68

G0.01 86.20 0.67 85.37 87.03

G0.1 84.73 0.38 84.26 85.21

G0.25 82.73 0.22 82.46 83.01

G0.5 79.67 0.82 78.65 80.68

Flexural Strength
(MPa)

G0 89.40 1.36 86.03 92.77

G0.01 88.57 3.37 80.20 96.93

G0.1 77.03 5.58 63.16 90.89

G0.25 61.96 3.4 53.51 70.41

G0.5 36.47 2.92 29.20 43.73

Roughness
(Ra)

G0 1.10 0,087 0.99 1.21

G0.01 1.08 0.12 0.84 1.14

G0.1 1.25 0.10 1.12 1.37

G0.25 1.79 0.11 1.66 1.92

G0.5 1.87 0.18 1.65 2.09

Figure 6. Flexural strength mean values by three-point 
bending test. Asterisks (*) indicate statistical significance 
compared to G0 (p<0.05).

Figure 7. Hardness shore D mean values. Asterisks (*) 
indicate statistical significance compared to G0 (p<0.05).

Figure 8. Mean values of surface roughness. Asterisks (*) 
indicate statistical significance compared to G0 (p<0.05)
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incorporating graphene in concentrations higher than 0.1wt% 
affected flexural strength negatively. This finding agrees with 
two investigations that verified that graphene did not improve 
the resin’s flexural properties.52,56 In turn, Lee et al.54 found 
that incorporating only 0.5wt% of graphene oxide (GO) en-
hanced flexural strength significantly, while higher GO con-
centrations (1wt% and 2wt%) showed a decrease in flexural 
strength values. These contradictory results may derive from 
the different methods used in these studies to add graphene 
to resin and to simulate the oral environment before the bend-
ing tests. Di Carlo et al.51 and Agarwalla et al.55 observed a 
significantly higher mechanical strength in the graphene-re-
inforced resin G-CAM, but the percentage of graphene was 
unknown, which may explain the different results. In a recent 
study, Punset  et al.60 revealed that G-CAM’s graphene concen-
tration was 0.027% by weight — a low concentration. These 
findings agree with the present study’s results, as a low 
graphene concentration (0.01wt%) provided a flexural strength 
similar to that of neat resin. Other studies have shown a great-
er improvement in polymers’ mechanical properties with low 
graphene concentrations.61,62 An et al.61 even demonstrated 
that flexural strength worsened at graphene concentrations 
greater than 0.1wt%.

Hardness indicates a material’s extent of resistance to 
plastic deformation.63,64 Lee et al.56 evaluated this mechanical 
property in a conventional PMMA dental resin reinforced 
with graphene at 0.25wt%, 0.5wt%, 1wt%, and 2wt% concen-
trations and verified that adding graphene significantly in-
creased the resin’s hardness. Agarwalla et al.55 and Punset et 
al.60 studied the influence of graphene reinforcement in the 
PMMA pre-polymerized dental resin G-CAM and found that 
hardness was similar to neat PMMA. In the present investi-
gation, the resin’s hardness increased at graphene concen-
trations of 0.01wt% and 0.1wt% but decreased and was lower 
than the control’s in higher concentrations (0.25wt% and 
0.5wt%). These different results may be explained by the dif-
ferent kinds of resin used in the three studies, which entail 
different processing techniques and, likely, a different influ-
ence of graphene.

Furthermore, there is a lack of knowledge about the influ-
ence of graphene on the UV polymerization reaction. One 
study reported reduced maximum curable thickness per scan 
when graphene was incorporated into photocurable resins.65 
The addition of nanomaterials into the resin causes the pho-
to-initiator and the nanomaterial to compete for light absorp-
tion. This competition usually leads to a less effective UV po-
lymerization process, which may explain the poor mechanical 
results obtained in the present investigation with graphene 
concentrations greater than 0.1wt%. Lopez de Armentia et al.57 
revealed that incorporating 0.1wt% of graphene into the pho-
tocurable resin caused a notable negative effect on printabili-
ty, potentially influencing the quality of the printed object.

Surface roughness is a factor of clinical relevance since it 
directly or indirectly affects microbial plaque’s retention in 
tissues in contact with the materials, increasing the risk of 
surface fatigue and decreasing their biocompatibility.66,67 In 
the present investigation, graphene increased the resin’s sur-
face roughness. This result agrees with other studies,55,58 and 
may result from graphene’s struggle to disperse in a polymer 

matrix, which may cause agglomerates of increased graphene 
concentration. 

This study’s null hypothesis was rejected because statisti-
cally significant differences were verified between the neat 
PMMA dental resin and the graphene-reinforced resins in the 
different properties studied: flexural strength, hardness, and 
surface roughness.

One limitation of this in vitro study could be that the me-
chanical tests were not performed in conditions similar to the 
oral cavity. It is important to understand the effect of 
graphene’s presence in resin in the long term while in func-
tion. We aim to repeat these mechanical tests after thermocy-
cling cycles in future studies. More studies are required to 
understand the fracture and deformation mechanisms better 
and consolidate these experimental observations. 

Conclusions

Considering the limitations of this study, we conclude that 
low concentrations of graphene seem to improve the resin’s 
hardness without compromising its surface roughness and 
flexural strength. Higher concentrations of graphene tend to 
worsen these properties. More studies are required to evalu-
ate other conditions and different parameters.
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