Solitary Myofibroma in the Oral Vestibule.

A Case Report.

Filipe Coimbra*, Pedro Moreira**, Otília Lopes***

Resumo: Foi detectada uma tumefacção sessil, com 1 cm de diâmetro, na mandíbula junto à zona vestibular do dente 46. A doente era uma mulher caucasiana com 35 anos. O crescimento do tumor foi lento durante os últimos três meses. A exerese e o exame histológico revelaram tratar-se de um tumor benigno, não encapsulado, bem circunscrito, formado por células esguias alinhadas em bandas paralelas à superfície do tumor, ou ocupando uma área central em que as células eram mais poliédricas ao longo dos espaços vasculares. Este padrão, “zonação” e o facto das células serem imunoreactivas para actina do músculo liso e negativas para desmina permitiu chegar ao diagnóstico de miofibroma solitário. A raridade desta neoplasia torna o caso interessante para publicação.

Palavras-Chave: Miofibroma, Tumor intraoral solitário

Abstract: A sessile round swelling, 1 cm in diameter, occurred in the right mandibular vestibule close to tooth 46 root of a 35-year old Caucasian female, growing slowly during the last 3 months. Histology of the excised unencapsulated but well circumscribed mass showed a benign neoplasm made up of spindle cells either aligned in bundles parallel to the tumour surface or occupying a central area in which cells were more polyhedric among vascular spaces. This zonation pattern and the fact that cells were immunoreactive to smooth muscle actin and negative to desmin led to the diagnosis of solitary myofibroma. The rarity of this neoplasm made this case worthy of presentation.

Key-words: Myofibroma; Solitary intraoral tumor

Myofibroma and myofibromatosis are, respectively, the isolated and multicentric varieties of a benign neoplasm made up of myofibroblastic cells, occurring in several locations, often in dermis or submucosal structures including that of the mouth[1,2]. Myofibroma, the single form, predominates in the head and neck of the adult. Intraoral myofibromas usually are firm and painless masses, well circumscribed and relatively rare since only 37 cases have been traced in the English language literature from 1981 to 2001[3]. Among the 307 oral spindle cell neoplasms reviewed by Jordan and Regezi in 2003[4], myofibromas made up 8 cases. Their clinical diagnosis is sometimes doubtful since they may present unusual clinical features such as ulceration or active growth which may at first suggest the occurrence of a malig-

nent outgrowth[5]. Considering the rarity of this oral tumour, this present case was deemed worthy of presentation.

A 35 year old Caucasian female complained of a round mass in the right mandibular vestibule close to the first molar, which had become apparent 3 months previously and has been growing slowly since then (Figure 1). At first it seemed a reactive granuloma of tooth 46 which was therefore devitalized with no consequences on the outgrowth, while X rays showed no relationships with the teeth of the mandible. Total excision of the unencapsulated but well circumscribed mass was carried out. Histological examination revealed, after routine H+E staining of paraffin sections, a tumour of spindle cells arranged at a cha-
Characteristic zoning pattern (Figure 2). In the center there was abundant cellularity with polyhedric cells oriented haphazardly over a slightly myxomatous background among some blood vessels. At the periphery the elongated fibroblast-like cells occurred in dense bundles parallel to the surface at some points contiguous to skeletal muscle fibers. Immunostaining with polyclonal antibodies raised in the mouse, from Labvision, Freemont, USA, showed that tumour cells had the cytoplasm reactive to smooth muscle actin (Figure 3) and negative to skeletal muscle actin, desmin, CD-34 and S-100 proteins. A one year follow-up showed no recurrences.

Three microscopic features are considered essential to characterize solitary myofibromas: the zonation pattern of cell arrangement, cell immunoreactivity to smooth actin but not desmin, and the absence of cell malignancy \(^1\). All of them occurred in the present case.

Concerning the differential diagnosis with other tumours derived from myofibroblastically differentiated mesenchymal cells, low grade myofibrosarcomas should be considered first since myofibromas may exhibit transient mild infiltration of peripheral structures and occasional regressive ulceration \(^5\). However, myofibrosarcomas have cells with high mitotic index, abnormal mitoses, and consistent infiltrative features or persistent ulceration, lack the typical zoning pattern and are immunoreactive to both smooth actin and desmin \(^6\). Nodular fascitis is another myofibroblastic neoplasm but with no zonation, desmin-positive cells and a strongly myxomatous stroma \(^7\). The benign and rare oral myofibroblastoma again shows no zonation with cells often immunoreactive to CD-34 \(^8\). The inflammatory pseudofibroblastic tumour, though exhibiting zonation, shows abundant foci of lympho-plasmocytic cells and dense collagenous bundles, while cells are CD-68 immunoreactive, which does not occur in myofibromas or myofibromatosis \(^9\). Finally, leiomymias are akin to myofibromas in arising from smooth muscle cells and therefore are immunoreactive for smooth actin, however cells have blunt-ended nuclei arranged in dense crossing bundles with no zonation and are desmin-positive \(^10\).

As to oral tumors arising from other strains of spindle cells, single fibromas or multiple fibromatosis are made up of fibroblasts devoid of actin and arranged in uniform bundles among dense waving collagen fibers \(^10\). Neural tumours including schwannomas are easily recognizable by the typical palisades of spindle cells devoid of actin and rich in S-100 protein \(^10\).

Since myofibroblasts after birth are ubiquitous cells occurring in healing processes, their presence in the bucal mucosa may be thought to appear during healing of a disregarded local wound, although this origin has not been proven so far. On the other hand, the contiguity with striated muscle from the masseter or the buccinator in this patient might suggest that dormant myoblasts in these muscles could have woke up giving rise to the present tumoral mass. However the lack of skeletal muscle actin contradicts this hypothesis \(^11\). It should be stressed that myofibromatoses have the same histologic features as myofibromas although the former consist of multiple tumours appearing several years apart in different locations, as reported recently by Scheper et al. \(^12\). In addition, their incidence is high in children and very rare in adult patients.
REFERENCES