Authors	Year	Aim and main results/conclusions	Statistical method	
Chay SH et al. ⁵	2007	"To evaluate the effects of different surface treatments and aging on the bond strength of orthodontic brackets bonded to provisional materials."	Three-way ANOVA and Tukey HDS post hoc; Kruskal-Wallis and Mann-Whitney CI 95%	
		bond strength seems to be influenced by surface treatment. type of surface and time		
Rambhia S et al. ⁴	2009 -	"To test the hypothesis that there is no difference in the shear bond strength of brackets bonded to provisional crown materials using two adhesive agents ."	Three-way ANOVA and	
		bond failure was of the adhesive type; bond strenght may be not influenced by the type of brackets or the adhesives; PEMA based acrylic had the worst performance compared to the other materials	CI 95%	
Maryanchik I	2010 _	"To compare the shear bond strengths of orthodontic brackets bonded to various commonly used esthetic pontic materials ."	Two-way ANOVA and Tukey HDS post hoc;	
et al. ⁸		bond strength may be affected by the pontic material and time but a significant interaction made results uninterpretable	Kruskal-Wallis CI 95%	
Masioli DLC	2011	"To evaluate the influence of the surface treatment of acrylic resins on the shear bond strength of composite resin bonded brackets."	Mann-Whitney –	
et al.		silane did not enhance bond strenght; greater roughness contributes to increase the bond strength		
de Almeida JX	2013	"To assess the adhesive resistance of metallic brackets bonded to temporary crowns made of acrylic resin after different surface treatments."	Two-way ANOVA and Games-Howell; Kruskal-Wallis CI 95%	
et al. ⁹		bond strength seems to be influenced by surface treatment and type of adhesive		
Al Jabbari et al. ²	2014 -	"To evaluate the combined effects of material type . surface treatment . and thermocycling on the bond strength of orthodontic brackets to materials used for the fabrication of provisional crowns".	One-way ANOVA and	
		bond strength seems to be influenced by surface treatment. type of surface and aging; sandblasting performed better compared to the other materials	CI 95%	
Dias FM et al. ¹⁰	2015	"To compare shear bond strength of different direct bonding techniques of orthodontic brackets to acrylic resin surfaces."	ANOVA and Tukou toot	
		bond strength seems to be influenced by adhesive type – CAAR showed better results than light-cured composite resin. The surface treatment may influence the bond strenght depeding on adhesive type – diamond bur only increased shear bond strength on composite resin group	Kruskal-Wallis CI 95%	
Goymen M et al. ⁷	2015 -	"Evaluate the effect of different temporary crown materials and surface roughening methods on the shear bond strength of orthodontic brackets."	One-way ANOVA and Tukey HDS post hoc CI 95%	
		bond strength seems to be influenced by surface treatment – Er:YAG laser surface pre-treatment increased significantly the bond strength – but not by the type of surface		
Soon HI et al. ¹¹	2015 -	"To compare the shear bond strengths of five different adhesive techniques for attaching metal orthodontic brackets onto acrylic pontics."	Two-way ANOVA and	
		bond strength seems to be influenced by adhesive type – cyanoacrylate adhesive performed better then composite resin and surface treatment – sandblasted and undercut groups showed significantly higher bond strength. NSD were found for fadigue tests	CI 95%	
Correia AMO et al. ¹³	2016	"To evaluate the performance of cyanoacrylate associated with orthodontic materials commonly used for the fixation of metallic braces on temporary restorations of acrylic resin."	One-way ANOVA and Tukey HDS post hoc CI 95%	
		bond strength seems to be influenced positively when associating cyanoacrylate to monomer of methyl methacrylate		

Appendix 1. Study objectives and main results/conclusions

NSD. no significant diferences; CAAR. chemically activated acrylic resin

Authors	Year	Groups	N total	N per group	Strenght	Test	Crosshead speed	Brackets n and area	naterial (mm²)	Thermo cycling fatigue tests	ARI	SEM	Storage solution. temperature and time
Chay SH et al. ⁵	2007	12	240	20	MPA	SBS	0.5mm/min	metal	10.89	-	Artun and Bergland (1984)	no	distilled H ₂ O 35°C 1w or 1m
Rambhia S et al. ⁴	2009	4	160	40	MPA	SBS	5mm/min	metal and ceramic	9.03 and 11.29	-	Failure Mode	no	distilled H ₂ O 37°C 24h
Maryanchik I et al. ⁸	2010	3	90	30	MPA	SBS	1mm/min	metal	9.48	-	Artun and Bergland (1984)	no	distilled H ₂ O 37°C 24h
Masioli DLC et al. ¹²	2011	14	140	10	MPA	SBS	0.5mm/min	n.d.a	n.d.a	-	no	yes	distilled H ₂ O 37°C 24h
de Almeida JX et al. ⁹	2013	6	180	30	MPA	SBS	0.5mm/min	metal	n.d.a	-	Artun and Bergland (1984)	no	distilled H ₂ O 37°C 24h
Al Jabbari et al. ²	2014	4	240	60	MPA	SBS	1mm/min	metal	n.d.a	500cycles:5°C(30s)- 5s-55°C(30s)	Artun and Bergland (1984)	no	distilled H ₂ O 37°C 24h
Dias FM et al. ¹⁰	2015	4	64	16	MPA	SBS	0.5mm/min	metal	14.79	-	Artun and Bergland (1984)	no	distilled H ₂ O 37°C 24h
Goymen M et al. ⁷	2015	15	300	20	MPA	SBS	1mm/min	metal	n.d.a	500cycles:5°C(30s)- 5s-55°C(30s)	no	yes	distilled H ₂ O 37°C 24h
Soon HI et al. ¹¹	2015	5	200	40	MPA	SBS	1mm/min	n.d.a	n.d.a	500cycles	no	no	n.d.a. / room temperature 24h
Correia AMO et al. ¹³	2016	4	40	10	MPA	SBS	0.5mm/min	metal	12.89	-	no	no	n.d.a

Appendix 2. Data exposed chronologically

n.d.a. no data available

Appendix 3. Bond strenght in megapascals (Mpa)

	Surface	bis-GMA / bis-Acrylic	PMMA	PEMA	Pre-fabricated teeth	MMA	UMA
Authors (year)	treatment	Strength (standard desviation)					
Chay SH et al. (2007) ⁵	Druch	3.76(0.76)1w XT	12.16(1.48)1w XT				
	Brusn	3.70(1.57)1m XT	11.26(2.19)1m XT	-			
	Dumino	3.87(0.88)1w XT	12.42(2.24)1w XT	-			
	Puillice	4.72(1.80)1m XT	9.52(2.11)1m XT	-	-	-	-
	Sandblasting	3.75(0.08)1w XT	11.06(1.40)1w XT	-			
	Al2O3	5.53(1.44)1m XT	10.04(0.85)1m XT				
		8.31(1.43)FO	-	2.81(1.33)FO		8.52(2.24)FO	
		7.78 (4.44)OA		5.08(1.49)OA		6.62(2.81)OA	
		9.33(2.02) FO					-
Rambhia S		8.37(2.12)OA	-	-		-	
et al. (2009) ⁴		8.25 (2.45)FO		9.32(2.53)FO		5.40(2.18)FO	
		7.10 (1.50)OA		8.27(2.08)AO		7.83(1.80)AO	
		7.42 (1.73) FO					-
		9.65 (2.35) OA		-		-	
	Sandpaper	6.5(2.6)24h XT	9.5(2.6)24h XT		5.3(4.5)24h XT		
Maryanchik I et al. (2010) ⁸	disc + Sandblasting Al2O3	11.3(4.7)7d XT	14.7(7.3)7d XT	-	5.5(2.1)7d XT	-	-
	Sandblasting					4.23(2.32) XT	-
	Al2O3					3.65(2.48)sil XT	
	D: 11					2.69(1.88) XT	
	Diamona dur					2.07(1.24)sil XT	
	Hydrofluoric					2.75(0.86) XT	
Masioli DLC	acid 9.6%			_		1.47(1.13)sil XT	
et al. (2011) ¹²	Fosforic acid	-	-	-	-	2.39(1.34) XT	
	37%					2.94(1.88)sil XT	
	Plastic					2.97(2.16) XT	
	conditioner					3.13(1.07)sil XT	
	Monomor					3.66(1.74) XT	
	MONOTIONE					2.44(1.21)sil XT	
	Sandpaper			-		18.04(3.46)D	
	SiC	-	-		-	9.71(2.11)XT	
de Almeida JX	Sandblasting					22.64(4.04)D	
et al. (2013) ⁹	Al2O3					11.23(2.75)XT	
	Monomor					22.41(3.95)D	
	MONOTIONE					9.67(1.95)XT	
	Sandpaper	10.3XT	3.1XT / 1.7XT	1.3XT			
	SiC	9XTatc	0XT atc / 0XT atc	0.8XTatc			
Al Jabbari YS	Pumice	6.4XT	0.6XT / 1.6XT	1.6XT			_
et al. (2014) ²	runne	5.6XTatc	0XT atc / 0XT atc	0.8XTatc		-	-
	Sandblasting	6.7XT	1.8XT / 9.7XT	6.8XT			
	Al2O3	13.1XTatc	7.9XT atc / 7.5XT atc	5.3XTatc			

	Surface	bis-GMA / bis-Acrylic	PMMA	PEMA	Pre-fabricated teeth	MMA	UMA
Authors (year)	treatment	Strength (standard desviation)					
Dias FM et al. (2015) ¹⁰	Pumice and		12.19(1.58)D				
	rubber cup	_	1.38(0.40)XT	_	-	-	
	Diamond hur	_	12.41(1.96)D	_			
			4.37(1.14)XT				
Goymen M et al (2015) ⁷	Fosforic acid 37%	5.06(1.44)XT 3.68(1.22)XT	4.35(0.89)XT	2.23(0.29)XT			2.86(0.47)XT
	Sandblasting Al2O3	5.24(1.57)XT 3.89(0.73)XT	4.72(1.38)XT	2.74(0.55)XT	-	-	4.06(0.48)XT
	Laser Er:YAG	6.36(1.50)XT 5.43(0.81)XT	4.85(1.31)XT	4.46(0.96)XT	-		4.26(0.55)XT
					4.22(1.15)GG		
					4.37(1.10)GGatc		
	Nono				19.82(2.93)CA		
	INDITE				18.13(2.37)CAatc		
Soon HI					4.14(1.04)Pan.		
et al. (2015) ¹¹		-	-	-	4.15(1.12)Pan.atc	_	-
	Sandblasting				17.18(2.72)GG		
	Al2O3	_			17.04(2.05)GGatc		
	Undercut				17.69(2.98)GG		
	window				17.02(2.33)GGatc		
Correia AMO et al. (2016) ¹²						7.76(6.96)D	
	Pumice					13.76(4.43)D+CA	
			-	-	-	3.87(4.91)XT	_
						4.03(3.56)XT+CA	

Ceramic brackets; After thermocycling (atc); 1week (1w). 1month (1m); 7 days (7d). Acrylic resin MMA (D); TransbondXT (XT); FujiOrtho LC (FO); Ortho Adhesive (OA); Gengloo (GG); Panavia (Pan.); Cyanoacrylate (CA); Silane (sil)